COMPOSITION OPERATORS BETWEEN HARDY AND BLOCH-TYPE SPACES OF THE UPPER HALF-PLANE

S. D. Sharma, Ajay K. Sharma, and Shabir Ahmed

Reprinted from the Bulletin of the Korean Mathematical Society Vol. 43, No. 3, August 2007

©2007 The Korean Mathematical Society
COMPOSITION OPERATORS BETWEEN HARDY AND BLOCH-TYPE SPACES OF THE UPPER HALF-PLANE

S. D. Sharma, Ajay K. Sharma, and Shabir Ahmed

Abstract. In this paper, we study composition operators $C_\varphi f = f \circ \varphi$, induced by a fixed analytic self-map of the of the upper half-plane, acting between Hardy and Bloch-type spaces of the upper half-plane.

1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} and φ be a holomorphic self-map of \mathbb{D}. Then the equation $C_\varphi f = f \circ \varphi$, for f analytic in \mathbb{D} defines a composition operator C_φ with inducing map φ. During the past few decades, composition operators have been studied extensively on spaces of functions analytic on the open unit disk \mathbb{D}. As a consequence of the Littlewood Subordination principle [3] it is known that every analytic self-map φ of the open unit disk \mathbb{D} induces a bounded composition operator on Hardy and weighted Bergman spaces of the open unit disk \mathbb{D}. However, if we move to Hardy and weighted Bergman spaces of the upper half-plane

$$\pi^+ = \{z \in \mathbb{C} : \text{Im } z > 0\},$$

the situation is entirely different. There do exist analytic self-maps of the upper half-plane, which do not induce composition operators on the Hardy spaces and weighted Bergman spaces of the upper half-plane (see [4], [10] and [12]. Interesting work on composition operators on Hardy spaces of the upper half-plane have been done by Singh [11], Singh and Sharma [12], [13], Sharma [9] and Matache [4] and [5]. Recently, several authors have studied composition operators and weighted composition operators on Bloch-type spaces of functions analytic in the open unit disk \mathbb{D}. For example, one can refer to [6] and [7] and the references therein for the study of these operators on Bloch-type spaces. However, composition operators on the Bloch-type spaces of the upper half-plane remain untouched so far. The main theme of this paper is to study composition operators between Hardy and Bloch type spaces of the upper half-plane. The plan of the rest of the paper is as follows. In the next section
we introduce Hardy and Bloch-type spaces of the upper half-plane. Section 3 is devoted to characterize boundedness of composition operators on the Bloch space of the upper half-plane whereas boundedness of composition operators on Growth spaces is tackled in section 4. Sections 5 and 6 deals with the boundedness of composition operators between Hardy and Bloch-type spaces of the upper half-plane.

2. Preliminaries

In this section we review the basic concepts and collect some essential facts that will be needed throughout the paper.

2.1. Hardy spaces of the upper half-plane.

For $1 \leq p < \infty$, the Hardy space of the upper half-plane is defined as

$$H^p(\pi^+) = \{ f : \pi^+ \to \mathbb{C} | f \text{ is analytic and } ||f||_p^p = \sup_{y>0} \int_{-\infty}^\infty |f(x+iy)|^p dx < \infty \}.$$

With this norm $H^p(\pi^+)$ becomes a Banach space and for $p = 2$, it is a Hilbert space. To know more about these spaces, we refer to [1] and [2].

The growth of functions in the Hardy space is essential in our study. To this end the following estimate will be useful. For $f \in H^p(\pi^+)$, we have

$$|f(x + iy)|^p \leq ||f||_p^p \frac{1}{2\pi y}. \quad (2.1)$$

2.2. Bloch space of the upper half-plane.

The Bloch space of the upper half-plane π^+, denoted by $B_\infty(\pi^+)$, is defined to be the space of analytic functions f on π^+ such that

$$||f||_{B_\infty} = \sup_{z \in \pi^+} \{ \text{Im } |f'(z)| \} < \infty.$$

It is easy to check that $||f||_{B_\infty}$ is a complete semi-norm on $B_\infty(\pi^+)$.

2.3. Growth space of the upper half-plane.

The Growth space of the upper half-plane π^+, denoted by $A_\infty(\pi^+)$, is defined to be the space of analytic functions f on π^+ such that

$$||f||_{A_\infty} = \sup_{z \in \pi^+} \{ |f(z)| \} < \infty.$$

It is easy to check that $A_\infty(\pi^+)$ is a (non separable) Banach space with the norm defined above.
3. Composition operators on $B_\infty(\pi^+)$

In [4], Matache proved that a linear fractional map

\begin{equation}
\varphi(z) = \frac{az + b}{cz + d}, \quad a, b, c, d \in \mathbb{R} \text{ and } ad - bc > 0,
\end{equation}

induces a bounded composition operator on Hardy spaces $H^p(\pi^+)$ of the upper half plane if and only if $c = 0$. However, by a simple application of the Schwarz-Pick Theorem in the upper half-plane, we can show that every holomorphic map φ of π^+ such that $\varphi(\pi^+) \subset \pi^+$ induces a bounded composition operator on the Bloch space $B_\infty(\pi^+)$. Let us first state the Schwarz-Pick Theorem in the upper half-plane.

Schwarz-Pick Theorem in the upper half-plane. Let φ be a holomorphic map of π^+ such that $\varphi(\pi^+) \subset \pi^+$. Then for all $z_1, z_2 \in \pi^+$,

\[\left| \frac{\varphi(z_1) - \varphi(z_2)}{\varphi(z_1) - \varphi(z_2)} \right| \leq \frac{|z_1 - z_2|}{|z_1 - z_2|}. \]

Also for all $z \in \pi^+$,

\[\left| \frac{\varphi'(z)}{\varphi(z)} \right| \leq \frac{1}{\text{Im } z}. \]

Moreover, if equality holds in one of the two inequalities above, then φ must be a Mobius transformation with real coefficients. That is, if equality holds, then φ is given by (3.1).

Theorem 3.1. For any holomorphic map φ of π^+ such that $\varphi(\pi^+) \subset \pi^+$, the composition operator $C_\varphi : B_\infty(\pi^+) \to B_\infty(\pi^+)$ is bounded.

Proof. For arbitrary $z \in \pi^+$ and $f \in B_\infty(\pi^+)$

\[\text{Im } z |(C_\varphi f)'(z)| = \text{Im } z |f'((\varphi(z)))||\varphi'(z)|| \leq \frac{\text{Im } z}{\text{Im } \varphi(z)} |f'||\varphi'(z)|, \]

and, consequently, by a simple application of the Schwarz-Pick Theorem on the upper half-plane,

\[\sup_{z \in \pi^+} \frac{\text{Im } z}{\text{Im } \varphi(z)} |\varphi'(z)| < 1, \]

we have $C_\varphi f \in B_\infty(\pi^+)$. Hence by an analogue of the Closed Graph Theorem C_φ is bounded. \(\square\)

4. Composition operators on $A_\infty(\pi^+)$

Theorem 4.1. Let φ be a holomorphic map of π^+ such that $\varphi(\pi^+) \subset \pi^+$. Then $C_\varphi : A_\infty(\pi^+) \to A_\infty(\pi^+)$ is bounded if and only if

\begin{equation}
(4.1) \quad \sup_{z \in \pi^+} \frac{\text{Im } z}{\text{Im } \varphi(z)} < \infty.
\end{equation}
First suppose that (4.1) holds. Then boundedness of C_φ on $A_\infty(\pi^+)$ can be proved on similar lines as in the proof of Theorem 3.1.

Conversely, suppose C_φ is bounded. Fix a point $z_0 \in \pi^+$ and let $w = \varphi(z_0)$. Consider the function $f_w(z) = 1/(z - w)$. Then $f \in A_\infty(\pi^+)$ and $\|f_w\|_{A_\infty} \leq 1$. Boundedness of $C_\varphi : A_\infty(\pi^+) \rightarrow A_\infty(\pi^+)$ implies that there is a positive constant C such that, for each $z \in \pi^+$ we have $\Im z|f_w(\varphi(z))| \leq C$. In particular take $z = z_0$, we get

$$\frac{\Im z_0}{\Im \varphi(z_0)} \leq 2C.$$

Since $z_0 \in \pi$ is arbitrary, the result follows. \hfill \square

Note. If $c = a + ib \in \pi^+$ and $\varphi(\pi) = c$ for all $z \in \pi^+$, then φ does not induce a bounded composition operator on $A_\infty(\pi^+)$.

Corollary 4.2. Let $\varphi(z) = \frac{az + b}{cz + d}$, $a, b, c, d \in \mathbb{R}$ and $ad - bc > 0$. Then necessary and sufficient condition that C_φ is bounded on $A_\infty(\pi^+)$ is that $c = 0$.

Proof. First suppose that C_φ is bounded. Then for $z = x + iy \in \pi^+$,

$$\sup_{z \in \pi^+} \frac{\Im z}{\Im \varphi(z)} = \sup_{z \in \pi^+} \frac{(cx + d)^2 + c^2y^2}{(ad - bc)},$$

which is finite only if $c = 0$. Conversely, if $c = 0$, then $\varphi(z) = (a/d)z + (b/d)$, where $ad > 0$ and so

$$\sup_{z \in \pi^+} \frac{\Im z}{\Im \varphi(z)} = \frac{d}{a} < \infty.$$

Thus C_φ is bounded on $A_\infty(\pi^+)$. \hfill \square

5. Composition operators from $H^p(\pi^+)$ into $A_\infty(\pi^+)$

Theorem 5.1. Let $1 \leq p < \infty$ and φ be a holomorphic map of π^+ such that $\varphi(\pi^+) \subset \pi^+$. Then $C_\varphi : H^p(\pi^+) \rightarrow A_\infty(\pi^+)$ is bounded if and only if

$$\sup_{z \in \pi^+} \frac{\Im z}{(\Im \varphi(z))^{1/p}} < \infty.$$

Proof. First suppose that

$$M = \sup_{z \in \pi^+} \frac{\Im z}{(\Im \varphi(z))^{1/p}} < \infty.$$

By (2.1), $|f(z)|^p \leq ||f||^p_{H^p(\pi^+)}$, for all $z = x + iy \in \pi^+$ and $f \in H^p(\pi^+)$. Thus, for $f \in H^p(\pi^+)$

$$||C_\varphi f||_{A_\infty} = \sup_{z \in \pi^+} \Im z|C_\varphi f(z)| \leq \sup_{z \in \pi^+} \frac{\Im z}{(2\pi \Im \varphi(z))^{1/p}} ||f||_p$$

$$= (M/(2\pi))^{1/p} ||f||_p.$$
Hence $C_\varphi : H^p(\pi^+) \to A_\infty(\pi^+)$ is bounded. Conversely, suppose that $C_\varphi : H^p(\pi^+) \to A_\infty(\pi^+)$ is bounded. Fix a point $z_0 \in \pi^+$ and let $w = \varphi(z_0)$. Consider the function
\[f_w(z) = \frac{(\Im w)^{2-1/p}}{\pi^{1/p}(z - \overline{w})^2}. \]

Then
\[\|f_w\|_p^p = \sup_{y>0} \int_{-\infty}^{\infty} |f_w(x + iy)|^p \, dx \]
\[= \frac{(\Im w)^{2p-1}}{\pi} \sup_{y>0} \int_{-\infty}^{\infty} \frac{1}{|z - \overline{w}|^{2p}} \, dx. \]

Writing $w = u + iv$ and $z = x + iy$, we get
\[|z - \overline{w}|^{2p} \geq (v + y)^{2p-2} ((x - u)^2 + (y + v)^2) \]
and so
\[\|f_w\|_p^p \leq \frac{v^{2p-1}}{\pi} \sup_{y>0} \frac{1}{(y+v)^{2p-1}} \int_{-\infty}^{\infty} \frac{y+v}{(x-u)^2 + (y+v)^2} \, dx \]
\[= \frac{v^{2p-1}}{\pi} \sup_{y>0} \frac{1}{(y+v)^{2p-1}} \pi \]
\[= 1. \]

Boundedness of $C_\varphi : H^p(\pi^+) \to A_\infty(\pi^+)$ implies that there is a positive constant C such that, for each $z \in \pi^+$ we have $\Im z |f_w(\varphi(z))| \leq C$. In particular take $z = z_0$, we get
\[\frac{\Im z_0}{(\Im \varphi(z_0))^{1/p}} \leq 4\pi^{1/p} C. \]

Since $z_0 \in \pi^+$ is arbitrary, the result follows. □

Corollary 5.2. Let $\varphi(z) = \frac{az + b}{cz + d}$, $a, b, c, d \in \mathbb{R}$ and $ad - bc > 0$. Then $C_\varphi : H^p(\pi^+) \to B_\infty(\pi^+)$ is bounded if and only if $c = 0$ and $p = 1$.

Proof. First suppose that C_φ is bounded. Then for $z = x + iy \in \pi^+$,
\[\sup_{z \in \pi^+} \left(\frac{\Im z}{(\Im \varphi(z))^{1/p}} \right) = \sup_{z \in \pi^+} \left(\frac{(cx + d)^2 + c^2 y^2)^{1/p} y}{(ad - bc)^{1/p} y^{1/p}} \right), \]
which is finite only if $c = 0$ and $p = 1$. Conversely, if $c = 0$ and $p = 1$, then
\[\sup_{z \in \pi^+} \frac{\Im z}{\Im \varphi(z)} = \frac{d}{a} < \infty. \]

Hence $C_\varphi : H^p(\pi^+) \to B_\infty(\pi^+)$ is bounded. □

We next characterize boundedness of composition operators from $H^p(\pi^+)$ into $B_\infty(\pi^+)$.
6. Composition operators from $H^p(\pi^+)$ into $B_\infty(\pi^+)$

Theorem 6.1. Let $1 \leq p < \infty$ and φ be a holomorphic map of π^+ such that $\varphi(\pi^+) \subset \pi^+$. Then $C_\varphi : H^p(\pi^+) \to B_\infty(\pi^+)$ is bounded if and only if

$$\sup_{z \in \pi^+} \frac{\operatorname{Im} z}{(\operatorname{Im} \varphi(z))^{(p+1)/p}} |\varphi'(z)| < \infty. \quad (6.1)$$

Proof. First suppose that (6.1) holds. Let $f \in H^p(\pi^+)$. Then by Cauchy integral formula in π^+ [1], we have

$$f(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f(t)}{(t - z)} \, dt, \quad z = x + iy \in \pi^+.$$

Thus

$$|f'(z)| \leq \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{|f(t)|}{|t - z|^2} \, dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{|f(t)|}{(t - x)^2 + y^2} \, dt.$$

Since

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{((t - x)^2 + y^2)} \, dt = 1,$$

x^p is convex, we have by Jensen’s inequality [8], p 62,

$$|f'(z)|^p \leq \frac{1}{2\pi y^{p-1}} \int_{-\infty}^{\infty} \frac{|f(t)|^p}{((t - x)^2 + y^2)} \, dt \leq \frac{1}{2\pi y^{p+1}} \int_{-\infty}^{\infty} |f(t)|^p \, dt.$$

Thus

$$|f'(z)|^p \leq \frac{||f||_p^p}{2\pi y^{p+1}}.$$

Thus, for $f \in H^p(\pi^+)$

$$||C_\varphi f||_{B_\infty} = \sup_{z \in \pi^+} \operatorname{Im} z |(C_\varphi f)'(z)| \leq \sup_{z \in \pi^+} \operatorname{Im} z / (2^p \operatorname{Im} \varphi(z))^{(p+1)/p} |\varphi'(z)| \, ||f||_p$$

$$= M ||f||_p.$$

Hence $C_\varphi : H^p(\pi^+) \to B_\infty(\pi^+)$ is bounded. Conversely, suppose that $C_\varphi : H^p(\pi^+) \to B_\infty(\pi^+)$ is bounded. Fix a point $z_0 \in \pi^+$ and let $w = \varphi(z_0)$. Consider the function

$$f_w(z) = \frac{(\operatorname{Im} w)^{2-1/p}}{\pi^{1/p} (z - w)^2}.$$
Then
\[f'_w(z) = \frac{(\text{Im } w)^{2-1/p}}{\pi^{1/p}(z - \overline{w})^3}. \]

As in Theorem 5.1, we have \(||f_w||_p \leq 1 \). Boundedness of \(C_\varphi : H^p(\pi^+) \to \mathcal{B}_\infty(\pi^+) \) implies that there is a positive constant \(C \) such that \(||C_\varphi f||_{\mathcal{B}_\infty} \leq C ||f_w||_p \leq C \). Hence, for each \(z \in \pi^+ \)
\[\text{Im } z |f'_w(\varphi(z))\varphi'(z)| \leq C. \]

In particular, putting \(z = z_0 \), we get
\[\frac{\text{Im } z_0 |\varphi'(z_0)|}{(\text{Im } \varphi(z_0))^{(p+1)/p}} < 4\pi^{1/p}C. \]

Since \(z_0 \in \pi^+ \) is arbitrary, the result follows. \(\square \)

Corollary 6.2. Let \(\varphi(z) \) be a holomorphic self-map of \(\pi^+ \) given by (3.2). Then \(C_\varphi : H^p(\pi^+) \to \mathcal{B}_\infty(\pi^+) \) is not bounded.

Acknowledgements. We are extremely thankful to the referee for going through the manuscript and pointing out several typographical and mathematical errors.

References

S. D. Sharma
Department of Mathematics
University of Jammu
Jammu-180006, India
E-mail address: somdatt_jammu@yahoo.co.in

Ajay K. Sharma
School of Applied Physics and Mathematics
Shri Mata Vashno Devi University
P/O Kakryal, Udhampur-182121, INDIA
E-mail address: aksju76@yahoo.com

Shabir Ahmed
Department of Mathematics
University of Jammu
Jammu-180006, India